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RESEARCH IN DENSE PLASMA ATOMIC PHYISCS
A I. Introduction

L In recent years there has been considerable interest in studying
plasmas at or above solid density because of 1ts importance to radiation
f: source development, inertial confinement fusion, and plasma spectrocopy.
In addition to these areas of application, there is a more fundamental

issue; that is, the modification of atomic properties and processes caused

by the dense plasma medium. It is the purpose of this investigation to
'_'.'_«_‘: carry on in the spirit of our earlier investigations and focus attention on
::'.;:'_ the solution to the time-independent Schrodinger equation with a self-
oy

consistent charge density.

oYy For calculations of atomic properties the usual approach 1is to
::::: iteratively solve a set of coupled equations statistically describing the
,:E::; charge distributions and an effective electron-ion interaction potential.
vie Incorporating this potential, the bound and free electron distributions are
found from the Schr;dinger equation. Thus, given an ion where the bound
' orbits are not externally specified, the solution of the equations directly
-;::: gives orbital energy eigenvalues and (fractional) populations. ‘The wave
functioﬁs and the effective electrostatic potential obtained “in”this manner
":::f can be used to find spontaneous decay rates and cross sections for various
.:_EJ atomic processes characterizing radiation, the spectrum of which can be
* employed to diagnose the plasma environment.
i Herein we describe a method of calculating atomic properties of ions
ﬁf in a hot, dense plasma environment. Before we examine some results of this
:E.Ej model, the Density Functional Method (DFM), we first examine the accuracy
A% with which the DFM predicts density distributions and ionic configurations
- when the plasma 1is strongly coupled, i.e., when standard theoretical
ﬁ: techniques can no longer be applied to arrive at a valid description of the
."’ plasma. The hypernetted chain (HNC) approximation for developing plasma
-' density correlations, however, has been shown to be accurate in this
regime. Thus a comparison of the DFM and HNC models for these dense
- plasmas is appropriate.
:‘E\’ In Section II we describe the HNC method and a mechanism of developing
;” an interionic potential from those results. Comparisons are made with the
‘.:-': DFM as well as Debye and nearest neighbor approximations, for strongly
::\::: Manuscript approved February 9, 1984,
;o
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coupled neon. We end the sectioﬁ by concluding that the DFM remains a
valid method even in strongly coupled plasma. Section II1 describes the
Density Functional technique in some detail. Results of line shifts and
broadening for hydrogenlike argon ions 1in strongly coupled argon plasmas

are presented. These results include the effects of electron collisiomns.

IT. Comparison Of Atomic Potentials For Strongly Coupled Neon

Thomas~Fermi and Hartree-Fock statistical models have been applied to

highly ionized atoms in dense plasmasl’2

and subsequently applied to a
strongly coupled neon plasma.3 However, ion correlations were neglected in
these approaches. A self-consistent set of Schrodinger- Poisson equations

including ion correlations was developed by Skupsky4

to study the plasma
microfield effects on a high~Z impurity ion embedded by a dense fully
ionized low-Z plasma. An improvement over this method - the quantum
mechanical treatment of the free electrons - was made by Davis and
Blalha.5 In a similar manner density functional theory (DFT) has been
employed to investigate level shifts and screening effects in the impurity
problem.6'7
The 1inclusion of 1ion correlations in these latter models is
accomplished using a Boltzmann distribution under the assumption of nearly-
classical 1iom interactions. In the case of the one-component plasma
(dynamic 1ions in a neutralizing background charge), the assumption of a
Boltzmann-like form for the ions would be erroneous for values of the iom
coupling parameter,
o= @ 2e?s

r ?

o
greater than about three.8'? Here Z is the effective ionic change, r, 1is
the ion sphere radius, and g8 = l/kBT' This discrepancy 1is not as

gignificant for a "real” two-species plasma because the mobile electron
fluid 1s able to provide more effective screening, but has yet to be
investigated in the two-species model for I' > 2 and for ions other than
hydrogen. If one can utilize a model that is expected to provide accurate

distributions for a strongly coupled system, one can also use that model to
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examine the validity of using self-consistent statistical models in the

strongly coupled regime.

Implicit in all the methods discussed here is the assumption that the
lifetime of the ionic state is long enough so that the plasma has time to
be polarized by the ion. Since the polarization (correlation) time is of
the order of the inverse of the plasma frequency, all of the cases we are
considering can be considered long-lived (a typical state lifetime —-- the
most rapid destruction mechanism being collisional de-excitation-- may be
of the order of 10714 - 10715 s mp-l is about 1017 s). Each model also
assumes that since the ion state exists through many plasma periods, the

concept of a time-averaged potential for atomic calculations is meaningful.

We investigate here the energy eigenvalues, charge distributions, and
effective electron-ion potentials for strongly coupled neon plasmas using a
self-consistent DFT model similar to that described in Ref. 7. These
results are compared with those obtained from the solution of the two-
component plasma hypernetted chain (HNC) equations, which are assumed to be
valid at these densities and temperatures. The results will indicate the
inadequacy of the Debye-HGckel (DH) an@ ion-sphere (IS) calculations when
13r¢1t.

Models

We consider an ion of nuclear charge Z in a plasma in which the
average effective charge is Z. Z is equal to Z minus the mean number of
bound electrons per ion and is a result of the model. Density functional
theory 1leads to a system of equations that mnust be solved self-
consistently. The electrostatic potential 1is given by the Poisson

equation,

2
V(r) = —%5-+ 4ne2

( ;1: fordr r? (pg*pyto,)

+[Ldr (o toyto) 1

(L)




The plasma 1is assumed to be in thermal equilibrium and all electrical
charge distributions are assumed to be sgpherically symmetric. In Eq.
1), Py is the 1local density of bound electrons found from solving
the Schrodinger equation where the interaction potential is V(r) from Eq.
(1) with oy set equal to zero.

e is the local charge density of free electrons. 1t is represented
by a Fermi-Dirac energy distribution beyond a spherical boundary large
enough so that the plasma at the boundary may be considered neutral.
Inside this sphere the free electrons may be treated quantum-mechanically
and are described by wave functions that are solutions of the time-
independent Schr;dinger equation. The ion charge density is assumed to
take the Boltzmann form

n, e-BV(r)
“Z

oy (2)
At r = =, Py = T Pas insuring neutrality; we also have appropriate
boundary conditions. The equation are solved self-consistently with these
boundary conditions to yield Par Py V(r), and the energy eigenvalues.

In order to gauge the reliability of the above model in a strongly
coupled plasma we turn to a semiclassical treatment of particle
correlations that has been found to accurately reproduce molecular-dynamics
calculations in this regime. 1In this approach - the two—component plasma
(TCP) - the ions and electrons are treated as classical particles that
interact through effective two-body potentials which deviate from pure
Coulomb behavior at short distances such that the essential quantum
diffraction effects are simulated. A particular form has been suggested by

n10 11

Deutsc and used in the computer simulations™". This form uses the

reduced mass de Broglie wavelength, xa , Where @ and 3 are gpecies labels,

f
as a quantum mechanical cutoff parameter, i.e.

CQCBeZ
Vas(r) =——— [1 - exp (-r/xag)], (3)

. 1/2
a h/(zwuaBkRT)

reduced mass. This potential is finite at the origin and 1is expected to

Ca is the charge, of species a and xa where LI is the

give reasonable results for nondegenerate plasmas so long as xee/ro «1




(A is the smallest of the three ) .) This condition is equivalent
ee 5,2 1/2 af
to I << 9 (2) /(Tev) .

In order to include the plasma many-body effects, the binary inter-
actions defined in Eq. (3) are used in the hypernetted chain (HNC)
equations.12 This 1s an approximate integral equation method for
calculating static correlation functions for systems of particles with long
range potentials and has proven to be accurate for strongly coupled

11 The quantities of interest are the radial distribution

hydrogen plasmas.
functions (rdf~’s), gas(r), which contain the static structural information

in the TCP. The HNC approximation for the rdf“s is
3a8(r) = exp [-BVGB(r) + has(r) - cas(r)]. (4)
where the total correlations
haB(r) = gas(r) -1 (5)

are related to the direct correlations caB by the Ornstein-Zernicke
equations
i,e

hog(k) = e q(k) + ;{ By (R) € g (k). (6)

Here the Fourier transform is defined as
- - @ 2 sinkr
hg(k) = 4mn ]o dr r* === h g (r). €

Eqs. (4-7) are solved iteratively for o, = {,e. The rdf“s generated
by this procedure reduce to their Debye—H;ckel (DH) forms in the limit of
weak coupling (T <K 1), but are considerably different from the DH
approximation when I' 1is order one or larger.

The TCP is a model system of point charges, ions with charge + Z and
free electrons with charge -1. Formally the HNC scheme requires the exact
Z as an input parameter; this is necessary if the ionic and electronic
distribuiton functions are to be examined. In order to find the effective

potential, however, only a rough guess of Z will suffice to determine much

of the V(r) curve.

Slh Aacd bbbt




The effective electron-ion potentia:s and the screening function,
e-l(k), are defined via Poisson”s equation, the Fourier transform of which
is given by

4re’z _ ane’z - (8)

V(k) = 2T¢ [S,,(k) = S, () Z ]
e o | k2 Pu fe

The static structure factors are defined by

1/2 -
haB(k) . (9

- . .
S,a®) = 8 5 + (g ggD)
Close to a test point ion of chérge Z the free electron distribution

determines V(r) ; the ion-ion rdf is negligible out to a distance of about
HNC

one-half T,ye In this regionm Poisson’s equation is

n
v2ve(r) = bne’ T [6(r) - = b (0], r <1 /2, (10)
HNC 3

where the prime on V(r) indicates the test fon has charge Z, not Z. For a
HNC
given temperature and electron density, a higher value of Z simply pulls

the electron distributionm, hie(r)’ in tighter, an effect that essentially
compensates the Z prefactor to hie' The result is that the function in
brackets in Eq. (10) is very nearly insensitive to the mean ionic charge,

i.e.

V' (r) = 4ne’ T £(r) (11)
HNC
where f(r) is a function nearly independent of Z. This is the rationale

behind the form of the potential in Eq. (8); V (r) 1is a screening
HNC
function dependent on density and temperature scaled by the nuclear charge

Z. We find that this form very nearly reproduces the potentials found in
the quantum-mechanical self-consistent model described earlier.
If the particle distributions are required (an accurate value of Z is

needed to obtain the actual distributions) two steps are necessary. First,

a guess of Z 18 made and the HNC equations solved for Sii(k) and Sie(k)'
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A "guess” of the potential is then found from Eq. (8). This potential can
then be used in the SchrSdinger equation to find wave functions for all
bound states. The integrated wave functions provide a new 7, in which,
when used in the HNC code a second time, provide a new potential and the
needed distributions. Generally only the one such iteration is required.
The definition13 of V(r) in Eq. (8) implies a form of the dielectric
function significantly different from that obtained using the fluctuation-
dissipation t:heot:m14 (FDT), although both forms reduce to DH forms in the
proper limits. For dense plasmas Vgne from Eq. (8) agrees much more
closely with results from the ion sphere model (described below) and with

Thomas—-Fermi calculations, as well as the “potential of mean force”
2
approximation, VMF(r) = Z% In [gei(r)], than an effective interaction

derived from the FDT. In fact Vppp(r) shows screening that everywhere has
a larger magnitude than Vpu(r). The Debye potential 1itself 1is known
already to predict excessive screening in plasmas where the validity of the
DH approximation 1s questionable. A plasma in a near metallic state (where
the ion sphere model might be used) shows a form very similar to the
potential defined via Poisson”s equation, which 18 qualitatively and
quantitatively distinct from an effective interaction derived from the FDT.

As the plasma approaches the 1limit of a solid structure, the
ion-sphere (IS) approximation becomes more valid. The ion-sphere modell"l5
agssumes complete ion shielding within an 1ion-sphere radius by a uniform

cloud of electrons. Poisson”s equation in this case yields

2
2,1 1 r
VIS(‘:‘) = Ze T Tt—o- (3 - -1.—2) 1. (12)
o

Results

We consider a strongly coupled neon gas plasma. Table I summarizes
the conditions under which the runs were made, the value of z being a
result of the self-consistent density functional (DF) model. All cases
have T “8 in excess of two. We note that both the HNC and DF models

e e e e e e A
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X Table I
E -

[y]]

: dj Summary of selected neon plasma conditions described by the models.

is the mean charge per ion. T is the ion coupling parameter.

[\ ]
-3

Electron Density Temperature

(em™3) (ev)

1024 400 8.77 2.2
2.10%% 250 7.61 3.4
5.1024% 250 7.85 4.9

5.1025 210 8.02 13.1
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reduce to correct Debye-H;ckel results in the 1limit of weak coupling
(Fr<«1).

The ion charge density from the self-consistent model normalized to

the backround density, pilp(w), is equivalent to the ion-ion radial distri-
bution function, g;y. Fig. 1 displays the ion distributions resulting from
DF solutions for the I' = 2.2 and ' = 4.9 cases. These figures are compared
with g4; from the HNC approximation using the effective binary interaction
in Eq. (3) and with the Debye form

-r/\

goi(r) =exp [ Zele U], (13)
T
where
A=2 = 4nn e2(Z+1)8 (14)
D e )

g?? shows the tendency of the DH approximation to excessively screen

8,16

the ions in dense plasma, an effect previously seen in the OC and the

TCPll. The HNC rdf 1is assumed to be the most accurate of the three

-5

representations, because, since 2 10 7, the ions are essentially

clagsical particles and the compu:i:rgimulations have supported the use of
the HNC approximation for classical systems. 1In spite of the fact that Y
in the DF method - Eq. (3) - cannot reproduce the oscillations around g;; =
1.0 for 2 S r/a° S 4 in the larger TI' case, the agreement between DFM and
HNC even at I = 4.9 is very good. The small difference between these two

117.

forms is not expected to alter the effective potentia ; we will test the

significance of the difference below.

Fig. 2 compares the electron density profile (including both bound and
free electrons) provided by the self-consistent method around an ion with
the ion-electron radial distribution function produced by the HNC code for
r=2.2. The profiles are very close for r/ao 2 0.25. The innermost r-
point calculated on the Fourier transform mesh in the HNC code is
r/ao = 0.125. This also corresponds to the innermost r—mesh point of the

potential, since rV(r)/ = Z, interpolation between r = 0 and the first

r=0
mesh point 1s possible for Vgye(r)-. Extrapolation of the HNC gy, to
smaller radii, however, would not be meaningful, since Aie/a° = 0,12;

thus quantum mechanical details are Iimportant in this region. Forrest

Rogers has investigated this subject for hydrogen and few-times ionized
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argon.13 Since our goal is a many-body effective potential with which to

examine average atom calculations, we find that the present model is
adequate.

The DF effective potential is a consequence of the solution of the
model. This function in the form rV(r) appears in Fig. 3 for I' = 2.2 and
I'=4.9. The HNC/Poisson potential - Eq. (9) - is also presented. The two
forms are seen to be very similar in both cases indicating the apparent
validity of the quantum mechanical model even at very high densities. The
Debye potential reveals much stronger screening except for large distances
where rV(r) tends to zero for all models.18 The ion-sphere approximation
is included for comparison: It agrees rather well with DFM and HNC/Poisson
at short distances, but predicts even larger than Debye screening farther
as r Dbecomes larger - a tendency very much distinct from DFM and HNC. The
overall form of the IS function 13 very different from the exponential
behavior of the DH, DFM, and HNC/Poisson functions, a result of its

constraint of fixed ionic volume.

Having now seen that the self-consistent formalism can provide
reasonable results (compared with the HNC data) for these strongly coupled
plasmas, we now look at the energy levels of the neon ifons. Table II is a
compliiation of negative energy eigenvalues arising from the solution of the
Schr;dinger equation within the method. All negative (bound) energies are
noted. The less deeply bound or absent DH values (resulting from more
severe screening) as well as eigenvalues found by using VIs(r) and VHNC(r)

are presented for comparison.

As a test of the significance of the difference between the two forms
of the ion distribution functions - the DFM [ Eq. (2) ] and HNC [ Eq. (4) ]
a run of the DF model was repeated for T = 3.4 using g?fc as a fixed
function instead of Eq. (2). Those figures are set in parentheses in Table
1I. The difference 1is indeed minor and of the order of the numerical
accuracy of the coded formalism.

As an example of a neon plasma at extreme conditions, we examined the
Zscm_3 and T = 210 eV, giving a T of 13.1. 1In this
regime one expects to see considerable difference between the profiles
produced by the DF and HNC methods. In Fig. 4 the ion distributions of the
HNC, DF, and DH theories are reproduced. The HNC rdf shows that in this

case in which ne = 5.10
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TABLE 1II

Energy eigenvalues in atomic units of neon plasmas at ' = 2.2, 3.4,

HNC SC
11 in place of oy

. for the parenthetical values under I =3.4), and the HNC/Poisson model,

- 4.9, and 13.1 from self-consistent model (using g

Debye model, and ion-sphere model potentials. All bound 1level

energies are given.

r= 2.2 I = 3.4

DF HNC 18 DR DF HBNC Is DH
1s | -42.3 =43.1 ~43.8 -39.7 =34.6 (-34.6) -39.4 | -41.8 -33.7
2s -6.15 -6.35 -6.45 =4.40 -2.88(-2.89) =3.77 | -4.65 -1.54
2p -~5.93 -6.24 -6.40 -4.00 =2.31(-2.41) -3.41 | -4.55 -0.77
3s -0.64 -0.57 ~0.23 -0.16
3p =0.50 -0.44 ~-0.12 -0.01
d =-0.22 -0.18

r = 4.9 r = 13.1
DF HNC Is DH DF HNC IS DR
s
o
L4
L4
ls | -31.4 -34.1 -39.0 ~25.8 -20.0 -21.5 | =27.1 -0.66

>

..~>
1% %%

is -1.30 -1.14 -2.40

2p -2.13

11
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case 1on correlations are not Boltzmann-like. The non-negligible

oscillation about 844 = 1 shows that there is now a strong indication of
ion ordering. Since the DF method utilizes Eq. (2), this effect is not
seen in those results. Quantitatively the DFM and HNC rdf“s are more
dissimilar than the 1less coupled cases, although the DH curve is
considerably more distinct from both of these.

Fig. 4 indicates that the effects of non-Boltzmann ion correlations
are expected to be seen in the potential only at distances of r/ao greater
than one. Inside this radius the DFM and HNC ion distributions are similar
enough that the potential, which here depends on the electron distribution,
is not expected to be greatly affected. The Debye potential is expected to
be overly screened again. Fig. 5 provides the calculated potentials for
r = 13.1. The ordering seen in Fig. 4 is obviously manifested as the r-
space oscillations in V(r). For purposes of atomic calculations, this
effect will have little significance as the spatial extent of the ls wave
function is limited to the volume inside r/ao = 0.15. For comparison we
have plotted the ion sphere potential (crosses), which is seen to coincide
closely with the DF and HNC effective potentials up to r/ao = 0.5,

OQur primary goal in this section is to investigate the applicability
of the Density Functional Method to strongly coupled plasmas. As points of
comparison we include potential calculations from Debye-Huckel (DH-—correct
for r<<1i and ion-sphere (IS-—-assumed correct for r >> 1)
approximations. The solution to the hypernetted chain (HNC) equations
incorporating a semiclassical binary pseudopocential,lo which has been
found to be accurate in strongly coupled hydrogen plasmas,11 is the plasma
model whose statistical properties the DFM must mirror in order to be
considered valid in this regime.

The DF method incorporates ion correlations via a Boltzmann factor
with the self-consistent potential in the exponent. Although this form is
approximate and cannot predict strong correlations which result in spatial
oscillations in 811 the DF ion distribution is very close to the HNC
profile for all cases considered with the exception of T = 13. The DH
profiles predict more closely packed ions due to considerably more
screening, a charateristic of DH theory outside of its range of validity

and known to be incorrect.8’11

12

P

A A SSRGS 8 8 - A 9 N ASEENAS . p

a4 bRt aata

.........
.....



The IS profile (not depicted on Figs. 1 and 4) is a step function at r

= r, with amplitude zero inside this radius and amplitude one beyond Lo
This extreme form is not appropriate for the lower I' cases, but is nearly
correct for I' = 13 (r°=0.64a°). Of course the structural oscillations are
absent in the IS model but this should not be very important for

calculations involving bound electrons.

The inner region of the effective potential is determined mainly by
the electron distribution around the ion. The HNC and DFM electron
distributions are seen in Fig. 2 to be close except very near the ion where
the HNC solutions cannot be found. The ion sphere profile here possesses
no structure, simply a horizontal 1line at 8ie = 1l; this difference is
crucial when developing the effective potential that is used to investigate

the atomic structure of the ion.

The effective potential is a consequence of the solution of the DF
method. The HNC interaction 1s derived from a screening function that is
nearly independent of the average effective charge, z (for a given
temperature and density), scaled to the nuclear charge of the ions. The
derivation of VHNC(r) is from Poisson”s equation, not the fluctuation
dissipation theorm as explained in the last sectiomn.

The DF potential is found to be very similar to Vgne(r) for the lower
I' cases. The HNC potential is less screened than the DF potential in the
region r ¢ r°/2, where the electron distribution essentially determines the
form of the potential. The electron "pile-up” near the nucleus is larger
in the DF model, more effectively screening the positive charge. The DF
electron distribution and thus the effective potential in this region are
probably more accurate than the HNC results. For larger r, however, the
ion distribution begins to effect the potential. The ion-ion rdf curves in
Figs. 1 and 4 show the ions generally less packed in the HNC approximation
than in the DF method, evidence of the greater "pile-up”, but the structure
is not simple. The enhanced (non-Boltzmann-like) ion correlations shorten
the range of the calculated potential. The HNC potential in this region is
probably the more accurate of the two.

Fig. 5 indicates the presence of very strong enhanced correlations

effecting the potential. Using the HNC ion distributions in the DF method

in place of the Boltzmann from does not allow g4i(r) to readjust to changes
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‘}.\, in the electron distribution in each iteration (unless the HNC code 1is

E{&. coupled directly to the DF scheme, a procedure we have not undertaken).

:{: Only in the I' = 13 case might this be important. A potential constructed

of the effective potential from the DF theory inside r = r°/2 and VHNC(r)

:f outside this point should suffice for most atomic calculations. For bound

:;f.' state energies at ' = 13, the differences between HNC an DF are not

S important (see Table II). Calculations of continuum properties may be

.:..~ effected. This problem will be investigated in the future.

f-\ The inner region 1is more important for obtaining information on bound

j states. Here, the ion sphere approximation is hampered by the assumption

. ‘ of uniform electron density with the result the VIS(r) predicts more deeply

~"" bound states than HNC or DFM (which are in turn more deeply bound than the

_:’ inappropriate DH values). This is true even at the extreme case of I' =

_'::::: 13.1 as indicated by Table II. At the temperatures and densities for the

' cases listed, the HNC and DF potentials predict the same number of bound

::.':z states with approximately the same energies. The IS approximation predicts

‘_E\ more deeply bound inner levels but may result in less energetically bound

:ﬁs outer levels (as in T = 2.2) if the wave functions extend into the region

{ where the range of the IS potential is foreshortened by its definition of a

::.‘_:: fixed ionic volume. The Debye values all indicate more shallow states,

::-;.: because of large screening. (If in the definition of )‘D in Eq. (14), 2

"'_:: were used instead of Z, the result would be even more severe screening.
' Setting Z = O in Eq. (14) i.e., using the electron Debye length, produces a

.' potential devoid of any ionic contributions to the correlation functions.

_,_ The result here i{s a potential that lies much above all of the curves; this

o approximation provides too little screening.)

_ Since the HNC/Poisson potential appears to be accurate for atomic

:‘a\ calculations 1in neon for T ¢ 2.2 (by Fig. 3 and Table 1II), this

\: approximation, which is very easy to generate, can be used to examine other

:‘-;:; properties of such strongly coupled systems requiring a many-body }

_ potential. For calculations at higher coupling and details of electron ‘
._ distributions very close to the nucleus, the self-consistent method is
,:\ needed. _|
4
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We have shown the self-consistent model produces reliable results for
strongly coupled plasmas compared to hypernetted chain results in neon up
to ' of order five and higher if HNC ion distributions are employed. In
addition, we have shown that the HNC method of generating correlation
functions provides an effective potential that can be used in calculations
of atomic properties up to ' of order two (for neon). Debye-H;ckel theory
is not a meaningful approximation in strongly coupled plasmas. Nor can we
recommend the use of the ion sphere potential for any of the cases examined

here.

IITI. Line Broadening and Ionization in Dense Argon Plasmas

In this particular section considerations are made to obtain the
binding energy of the electron in a given eigenstate via the Density
Functional Method. 1In effect we comnsider the difference of total energies
for the two specific configurations - one with the electron bound to the
ion, and the other where it is ionized and contributes to the free clectron
plasma. As will be seen from the results, the binding energies calculated
this way are significantly different from the usual procedure of generating

eigenvalues in an effective potential.
The Density Functional Method (DFM)

In the present investigation we have studied energy levels, lowering
of ionization potential, collision cross sections, and electron collision
line broadening of hydrogen-like argon in pure argon plasma at T = 1000 eV
and electron densities of 5 x 1024 and 2 x 1023 cm™3.

Basic assumptions of our procedure are the spherical symmetry of
electron and 1ion distribution around the central 1ion, continuous
distribution of all charges around the given nucleus, and the time-
independent character of wave functions describing both the bound and the

free electrons.

The electron wave functions satisfy the equation (in atomic units

which are used unless specified otherwise)
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0 {-37v-2 f———| o A + V_ [a (£)]=V__ [0 (=)]}o(D)=ev(F),  (15)
\'f:‘
where Z 1is the nuclear charge, p 1s the local charge density, ng, is the
local electron density (including the bound and free electrons), and ch is
':¢* the exchange-~correlation contribution to the chemical potential of a
\ L]
\:i: uniform electron gas of density n,. The wave function wnz of the bound
.4. electron in the nf orbit is normalized to unity, while the continuum wave
N functions are normalized so that at large r,
e
8 W (F) » exp [1k-7F] (16)
2
with k© = 2¢.
»a The local electron demnsity n, is calculated from the spherical average
‘ of lv_,1% and K7 2
ng k'
i: ne(r) Iwnll av + o] w(k)lwkl av dk, (17)
o
X 2 -zw
where 7 k "W(k) is the Fermi distribution function and
R JW(k)dk = ne(a) S Ne . (18) 3
R ;
L ‘
Therefore n (r) + N at large distance from the central ion. The |
expression for ch was taken from Dharma-Wardana and Taylor19 (see also 1
o, Ref. S5). It 1is assumed that the ion distribution follows the Boltzmann '
o)
g& statistics and that .
( !
ni(r) = ni(w)exp[-V(r)Z/kBT] . (19) 5
-~ )
7 _ A
kg is the Boltzmann constant, T the temperature, Z is the effective charge )
of ions surrounding a given hydrogen~like ion, and

v(r) --+j L7 g3, (20)
|-~ |

Finally, the local charge density p in (15) and (20) is given in terms of

u’v

FNP Y J

the electron and ion charge density Pa and Pys respectively, by

TN
a2
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p=p, toy, (21)

with

In a neutral plasma, ne(n) = Eni(w) .

The present method differs from the procedure used in Ref. 5 in one
important point. Hefe the electric charge density p in Eq. (15) 1is
calculated from all charges and both the bound and free electrons move in
the same potential. In Ref. 5 the self-interaction of the bound electron
was not included in the equation for wnz’ and V . was calculated only from
the density of free electrons. In the limit of very low densities Ne’ our
present method leads to incorrect asymptotic behavior of the potential
terms Iin (15), because the exchange-correlation term does not fully
compensate the self-energy contribution to (20). This difficulty is well
known from the Hartree-Fock-Slater approximation for many-electron atomszo,
but it is of negligible importance for high-density plasmas.

The Eq. (15) has been 3solved self-consistently by an iterative
procedure. Due to the high temperature and high nuclear charge Z, the
expansion of wk into partial waves requires inclusion of a large number of
terms. To speed up the calculation and to reduce the number of
contributing partial waves, we approximated the free electron density in

the outer region by the expression

n, = Y2 “-2 f. Ve { exp[(s—V"u)/kBT] + 1}-1 de (22)
V- /kT
with
V(r) = V(x) = V__[n ()] + V[0 (=)] . (23)

4 1s the chemical potential determined by the condition that ne+Ne for
r+»o, The distance Ty beyond which the electron density derived from the
solution of (15) was replaced by (22), was chosen in such a way that at T,

the densities n_, obtained by both methods were 1in agreement. This

e
condition does not uniquely determine Ty however, because the electron
density profile resulting from the solution of (15) exhibits oscillations

with decreasing amplitude as r increases, while (22) is a smooth function

17
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of r and it intersects the correct density profile in many points. 1In the
outer region, (22) represents a good approximation to a smoothed profile of
ng and it was verified that atomic parameters derived from such density
profile were in agreement with a full-scale calculation. The reliability
of (22) in the outer region is demonstrated in Fig. 6 which shows a
comparison of electron density profiles from the solution of Eq. (15) and
from formula (22). In this particular case, r, = 0.555 in the last
iteration, and the electron density for r > T, (dashed curve) was obtained

from (15) using a self-consistent potential of the last iteratiom.

The described procedure requires a knowledge of the effective charge
Z appearing in the ion distribution (19). We have determined Z from the
average atom model (AAM) using the density-functional theory for pure argon
plasma at a given temperature and electron demsity. Many variations of the
AAM have been described in the 1literature. They fall roughly into two
categories depending on whether the AAM has or has not a definite
boundary. In our method, the average atom is not spatially limited, and
the computational scheme for the solution of the AAM i3 the same as for the
hydrogen-like ion except for Eq. (17), where the term lwnzliv should be
replaced by

k2 Png Iwnzliv :

bnz are the occupation numbers of individual n{ levels obtained from the

relation
-1
bnz = 2(21+1){exp[(enz-u)/kBT]+1} . (24)
Z is then given by
Z=2-3,b,. (25)
Similarly to the case of a hydrogenic ion, Egs. (15), (17), (19) and

(21) should be solved self-consistently and Eqs. (24) and (25) have to be

satisfied. Results for two plasma conditions investigated in the present

paper are given in Table III.

XX
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‘233 Table III
“»

N Characteristics of pure argon plasma conditions studied in this paper.

WYY Temperature (eV) 1000 1000

Electron density (cm.3) 5 x 10%% 2 x 1023

¥y Effective ion charge Z 16.08 15.46

S AN Coupling constant 4.07 6.04

e

NN

.
2,00,

Debye length D(a,) 0.480 0.245

Ion sphere radius Ry(a,) 1.730 1.076

P e

Jsy s
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The validity of Boltzmann statistics for ion distribution (19) in a
plasma with the ion-coupling parameter T > 1 may be questionable, but a
comparison with the hypernetted chain approximation (Fig. 7) indicates that
even at this T the Boltzmann distribution 1is still an acceptable

approximation.
Results and Discussion

For plasma conditions considered in this paper, the Debye length is
much smaller than the ion sphere radius (Table III) and consequently one
can expect that the Debye-H;ckel theory would be inadequate for the
description of plasma properties. This 1is demonstrated by comparison of
potentials in Fig. 8. The DH potential is substantially lower than the
self-consistent potentials for either the AAM or the hydrogen-like ioms,

and the one-electron eigenvalues ¢ are correspondingly higher. Table IV

nf
shows a comparison of eigenvalues €

in the linearized DH potential, in the hydrogen-like argon iom from the

for the bound electron in the AAM,

solution of Eq. (15), and for an 1isolated H-like ion. The occupation
numbers bnz for levels in the AAM are also shown. The highest bound
levels in the AAM and in the H-like 1ions are 3d and 2p for electron
densities 5x1024 and 2x1025 cm'3, respectively, but only 38 and 23 in the
DH potential.

In considering the energy differences between various excited 1levels
of the ion, one has to add to the energy of the bound electron the energy
of the surrounding plasma which also depends on the - level nf . Let R” be
the distance from the nucleus of a given hydrogenic ion such that for r>R”,
ne(r) = Na» ni(r) - Ne/i, and V(r) = O. Assuming that the 1lons obey
Boltzmann statistics, the total energy En of an ion in the n¢ state and

L
the plasma inside a sphere with the radius R” is

w ] 2 > Z >
E, =c, + N/ 2—kZW(k)|wk|av akat + [ L, aF

+3 [(oy7,) | L":—) d¥- d¥ (26)

lnediafindedaduih bk aias
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+ fne{ch[ne(m)] ch[ne(r)] + fxc[ne(r)]} dr + 5 kT jnidr + TS.
f is the exchange and correlation energy per electron of a uniform

xc
electron gas of density n,, and it is related to Vee by

Ve =d [nefxc (n)]/dn,.

S is the entropy of the system inside R”“. In evaluating (26) for different

nl, R” should be such that the total number of particles inside R” remains

the same. Terms involving f ng dr and f n, dr then cancel out in energy

differences. We also omit small contributions arising from differences of
>

the terms ]ne(fxc - ch) dr + TS in (26).

The total enmergy E_ of a fully ionized atom can be obtained by the
same procedure, if the term 'anliv in Eq. (17) is omitted altogether. The
charge density distribution in this case differs from the distribution for
a hydrogenic ion. The negative ionization energy of the nf H-like level is

then equal to

- _ 3
Inz Enz E, +-7 kBT, (27)
where the last term represents the energy necessary for the thermalization

of the ejected electron. The values of Inz are shown in Table IV.

In Table V, we compare the lowering AI of fonization potential for
individual nf levels derived from Eq. (27), from eigenvalues of the H-like
ion in the Debye-ﬂackel potential, from the Stewart-Pyatt formu1a21, from
the temperature independent, uniform electron density ion sphere model
(AL = - 3 (2-1)/R, R, = don sphere radius), and from the DH formula
Al = - Z/D. The value D of the Debye screening length was taken from Table
III. Ry corresponds to the hydrogenic ion with a charge Z~1 = 17.0, and is
therefore slightly larger than values in Table III. The agreement between
our present results and the Stewart~Pyatt formula or the ion sphere model
is very good which can be understood by comparing the density profiles in
Figs. 6 and 7. Substantial deviations from a uniform electron density take
place only in the inner region of the ion sphere, and the 1ion density

profile is steep at the ion sphere boundary.
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Table V

Lowering of ionization potential for H-like argon at 1000 eV.

N =5«x 1024 cm-3 N =2 x 1025 cm'-3
e e
Present result From en2 Present result From e
Level (Eq.(13) and in DH (Eq. (13) and in DH
Table 1) potential Table 1) potential
1s -13.8 ~34.4 -21.4 -62.5
2s -12.1 -26.9 -19.2 -38.3
2p -12.2 -28.3 -19.5
3s -11.4 -17.6
3p -11.5
3d -11.7
Stewart-Pyatt - 13.6 - 22.0
Ion sphere model - 14,5 - 23.0
DH theory - 37.5 - 73.5
e
0
oo |
oY
33

r

Lowering A I (at. units) of ionization potential for hydrogen-like

argon. Pure argon plasma, T = 1000 eV.
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The frequency shifts of the Lyman o and Lyman 8 1lines obtained from
values Inz in Table IV are =43.5 eV and -62.6 eV, respectively, for the
electron density 5 x 1024 cm—s, and the Lyman a shift for No = 2 x 1025
cm-3 is -51.7 eV. However, these shifts do not necessarily correspond to
actual observable line shifts as mentioned in the conclusion. It 1s worth
noting that shifts obtained in the present paper are much larger than
shifts of an argon ion in a pure hydrogen plasma4’5, but they are smaller

than shifts derived from the eigenvalues ¢ only.

The optical transition probability c::fficients 4 calculated from the
standard formula using energy differences from Table IV and self-comnsistent
bound wave functions are changed by plasma effects only slightly as
indicated in Table VI.

The shift of spectral 1lines due to the plasma environment 1is
accompanied by the 1line broadening. There are several mechanisms that
participate in this process and we have restricted our investigation to the
electron collison ©broadening effects. Assuming that the impact
approximation 1is valid and that one can separate collision broadening
effects from other mechanisms, the full width at half-maximum (FWHM) of a

spectral line is given by

(in) (in)

'+v{

2
FWHM q(upper) + q(lower) TelV ] ]fupper(g) flowexr(n)l dn}av’ (28)
where q(in) (in) are the total inelastic collision rates for

(upper) and q(lower)
the upper and lower level, respectively, v is the electron velocity, £f(Q)

is the elastic scattering amplitude, and averge is taken over the electron
velocity distribution. For the lines of the Lyman series the contribution
to the width from the scattering on the lower level can be neglected and
the FWHM 1is then simply equal to the sum of all (elastic and 1inelastic)
collision rates for the scattering on the upper level. In our procedure,
collision cross sections and rates were calculated in a distorted-wave
approximation described in Ref. 5. The hypernetted-chain calculations for
these plasma conditions indicate that the mutual interaction between the
bound and the free electron is not affected by screening. We have used
therefore the full Coulomb interaction of the two electrons in the
evaluation of collision cross sections. The cross sections for the 2p-2s

transition exhibit resonances in the low-energy region (Fig. 9) caused by
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Table VI

'

Ratio A/Ac of transition probability coefficients
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Transition No =5 x 1024 cq~3 No =2x 1023 cp3

2p-1s 0.994 0.969
K% _ 3p-1s 0.835
A . 3p-23 0.995
o | 38-2p 1.140

3d-2p 0.936
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the enhancement of the low partial waves. A similar behavior has been
found previously5 for hydrogenic neon and argon at different plasma
conditions. The resonance appears to be caused by a temporary trapping of
the colliding electron in a quasi-bound orbit just above the ionization
limit.

Electron collision rates contributing to the perturbation of the 2p
level are summarized in Table VII together with the FWHM of the Lyman a
lines. It is to be noted that the 2p+2s collision rate represents a
dominant contribution to the sum of inelastic collision rates and that its
magnitude 1is due mainly to the small difference of the two levels as
apparent from the Inz values in Table 1IV. Thus correct differences of
energy levels are essential for the calculation of 1line widths. As
mentioned before, energy differences derived from the values Inz in Table
IV may not be directly observable and therefore suitable for the
calculation of inelastic collision cross sections. A complete theory
should include several other effects and also a time-~-dependent character of
all processes involved in the emission of radiation. Therefore the derived
value of the Lyman a width should be regarded only as an approximation.

The frequency of electron collisions with the H~-like argon is at least
two orders of magnitude larger than the spontaneous transition probability
for the Lyman o« line (A = 6.5 x 1013 sec-l). Our assumption, which is
implicit to the present treatment of hydrogen-like ions, that the
distribution of free electromns will adjust to the various atomic orbitals
nt, is therefore a reasonabale first approximation.

The frequency of plasma fluctuations is expected to be approximately.
equal to the plasma frequency, which, in our case, is equal to 2 x 1016 and
4 x 1016 sec'l, respectively. Since the average lifetime due to collisions
of the 1low excited state is of the same order of magnitude as the
individual plasma fluctuations, the use of a time-averaged potential and a
time-independent electron wave functions 18 not rigorously correct. For
the time being it is an iImplicit assumption in our formalism that remains
to be confirmed.

To conclude, there are a number of issues not directly addressed here

but have bearing on the problem. It has been our intent to describe the

effects of the plasma environment on the so-called 4isolated atom

eigenfunctions and eigenvalues. In a steady-state situation we have




:&{ Table VII

S Electron collision rates (sec-l) for scattering on the 1

2p level of a hydrogen-like argon. Pure argon plasma, T = 1000 eV.

:}{ Inelastic collisions No = 5x 1024'cm-3 N, =2x 1025 cm'3
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All elastic collisions 1.95 x 1017 8.69 x 1015
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La collision width (FWHM) 22.5 eV 110.0 eV
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accomplished this. A new basis set has been derived from which a number of
atomic parameters can be obtained. In addition, through the proper choice
of a time-development operator it should be possible to describe the time
evolution of these parameters as well as calculate some of the more
relevant physical observables, such as line shifts. The evaluation of
these quantities 1is presently under investigation and will be reported on
later. However, this should in no way detract from what has been
accomplished here. In fact, for a variety of cases and conditions it may
very well be that 2nd order terms calculated in our new basis set are
negligible.
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Electron density distribution around a fully stripped argon ion in

-3, solid curve - ng

dashed curve - n, from (15) and (17).
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